Efficient algorithms for task mapping on heterogeneous CPU/GPU platforms for fast completion time

Task Mapping for Heterogeneous Systems

This projects aims to design a fine-grain mapping framework that explores a set of critical factors is needed for heterogeneous embedded systems. The source code is published at https://github.com/asteriaaaa/smartCoopScheduler.

Zexin Li
Zexin Li
Ph.D. Student of ECE

I am a Ph.D. student at the University of California, Riverside (UCR). I am fortunate to be advised by Dr. Cong Liu and working with Dr. Yinglun Zhu. I received a bachelor’s degree from the Southern University of Science and Technology (SUSTech) under the advice of Dr. Yuqun Zhang in July 2020. My research interests include but are not limited to the interdisciplinary fields of real-time embedded systems and on-device machine learning. I am actively looking for cooperation in the following topics - (1) deploying machine learning models on real-time embedded devices, (2) system-application co-optimization of machine learning systems, and (3) improving performance robustness in machine learning systems. Feel free to contact me if we share common research interests.